hjc黄金城集团·(中国区)官方网站

专注 高精密,高要求,挑战性制造技术专业 hjc黄金城集团,桥梁橡胶支座,桥梁伸缩缝厂家
经理:18911711380客服热线:18911711380
产品推荐
相关常见百科

内蒙古桥梁伸缩缝

时间:2023-04-09 10:47 点击:

内蒙古桥梁伸缩缝

内蒙古的桥梁伸缩缝主要是为了保证桥梁的安全和舒适性而设计的。伸缩缝是指沿桥梁纵向设置的可动的接缝,可以在桥梁受热、受冷、受振动等情况下发挥灵活的作用,避免桥梁发生破裂和变形。

内蒙古的桥梁伸缩缝主要采用金属伸缩缝和橡胶伸缩缝两种类型。金属伸缩缝一般由铝板、钢板等金属材料制成,具有耐久、刚性强的特点;而橡胶伸缩缝则由橡胶材料制成,具有柔软、弹性好的特点。

除了上述两种常见的伸缩缝类型之外,一些大型的桥梁还可能采用滑动伸缩缝或伸缩模块组合伸缩缝等较为高端的技术,以保证桥梁的稳定性和安全性。

内蒙古一铁路桥被洪水冲垮,这座铁桥的质量究竟如何?

6月18日,内蒙古根河市得耳布尔河突发山洪,将潮乌铁路34公里159米的铁路桥梁冲毁。近日大兴安岭北部连降大雨,根河地区5日累积降雨量超过100毫米。据央视新闻消息称,为确保旅客列车的绝对安全,铁路部门在事发前日已根据天气预报启动防洪预警,提前将途经该线路地段的4170/67次、4168/9次旅客列车停运。

当日铁路人员发现洪水冲毁桥梁险情后,立即启动应急预案,组织对洪水毁坏的桥梁和铁道线路进行抢修。

首先你要看桥按什么分类,判断桥的类型,具体如下:

最重要是首先知道其结构体系,分成梁桥,拱桥等等其他的类型。

在道路桥梁工程的建设过程中,因为材料使用不当或者材料不符合要求后导致工程质量问题的案例比比皆是。材料的选择和应用直接影响工程质量、工程进度和其使用寿命,而材料的检测是把好材料现场选择和应用的关键。

一、桥梁原材料的常用检测方法

(1)外观检测 对于道路施工材料常见的就是采用外观检测,外观检测就是使用肉眼对于材料的表面以及材料的加工质量进行判定,但是由于外观检测主观意识比较强,因此在实际的使用过程中缺少一定的科学依据。

(2) 仪器检测 目前在道路原材料的检测方面基本上都是使用仪器进行检测,目前对于各种材料检测的方法非常多,根据不同的物理原理,通过光学或者是电磁学的检测方法是非常常见的。一般情况下,在对材料进行仪器检测之后就会出现一系列的数据,这些数据就是作为材料是否合格的依据,但是材料合格与否需要建立一系列的标准。当然,随着目前市场精密仪器的使用,因此在材料检测上,精准度也提高了不少。

二、桥梁检测内容

桥梁经常性检查就是对桥梁结构变异,桥及桥区施工作业情况的检查和桥面系、限载标志、交通标志及其它附属设施等状况进行的日常巡检,随时发现问题进行维修.

具体性检查内容,桥面系及其附属结构物的外观情况:

(1)桥面平整性、裂缝、局部坑槽、坑洞、拥包、车辙桥头跳车;

(2)桥面泄水孔(管)损坏、堵塞、渗漏;

(3)引道、防撞栏杆、人行道铺装、栏杆扶手等部位的污秽、破损、缺失、露筋、撞坏、锈蚀、断裂等;

(4)桥梁周围有无杂物堆积、杂草生长、蔓延;

(5)伸缩缝是否堵塞、破损、失效;

(6)墩台、锥坡、翼墙、挡墙、护坡的开裂、坍塌、沉陷;

事故已经发生,这座铁桥的质量究竟如何?有待官方最终给出的结论

桥梁施工工艺有哪些?

  桥梁工程
  1.顶推法施工:即利用设置在桥台上的水平千斤顶及其自动牵引装置牵引顶推传力索,通过主控台的集中控制,将在制梁台座上制好的梁段,在滑道上不断向前顶进,直至梁顶推到位,然后起梁、拆除滑道、安装支座、落梁、调整支座反力,完成梁的架设。在我国顶推法大多运用于建造城市大型桥梁,多用于跨径40~60m预应力混凝土等截面连续梁架设,顶推法可架设直桥、弯桥、坡桥。
  顶推法施工原理:
  (1)单点顶推的动力学原理可用下述数学表达式表示:当集中的拉力H > Σ Ri ( fi ±ai )时,梁体才能向前移动。
  (2)多点分散顶推施工的动力学原理可用下述数学表达式表示:当ΣFi > Σ ( fi ±ai) Ni 时,梁体才能向前移动。
这个表达式的物理意义是:把顶推设备分散于各个桥墩(或桥台)临时墩上,分散抵抗各墩的水平反力。如果千斤顶施力之和小于所有墩的水平摩阻力±梁的水平分力之和(上坡顶推为+ ,下坡顶推为- ),则梁体不动。 案例:包头黄河公路大桥位于内蒙古包头市南端,全长810米,宽12米,是当时中国建成的跨径最大的多点顶推法施工的连续桥梁。该桥于1983年10月建成通车。 赣江大桥西引桥桥跨为(3×48+12×48)米,采用膺架移动脚手架法施工和多点顶推法施工,顶推重量为3.4万吨,乃世界一流,为我国之最。 2.简支-连续施工:先简支后连续梁就是先把梁作成若干个小简支梁,作好后架设在临时支座上;然后绑扎或者焊接小简支梁的端头预留钢筋,然后立模灌注端头连接的混凝土,使各小简支梁成为一个连续的整体;待强度达到设计后,拆掉临时支座,就成为连续梁了。
  (一)、构造特点
  1、从制梁到安装(吊装),属于简支结构,方便施工。
  简支T梁的施工,就是构件的预制和安装,适宜标准化、工业化生产;从生产条件、劳动条件比连续梁施工所受到的环境条件、地质水文条件的限制和制约少得多,也方便管理,容易确保施工质量。
  2、通过墩顶湿连接及第二次张拉结构转换,使简支梁转换为连续梁。也就是说在使用服役期间是连续梁的特点,节约材料、减轻自重、增大跨度和刚度、行车舒适。
  3、由于是超静定结构,对基础要求、对其他的次生应力较为敏感。
  4、蒲家院子大桥的支座型式,为双支座墩顶湿连接结构,较单支座结构易于实现结构转换。
  5、桥面铺装是桥梁结构的组成部分:
  1)、梁肋的箍筋成为桥面铺装的连接筋
  2)、在翼板上设有专门的连接筋
  以上的连接筋均与桥面铺装的钢筋网有构造要求。
  
  
  (二)、受力(受载)特点
  结构转换实际是力学转换,为了说明问题,附图1中1-1图为结构简图及荷载图;1-2图为简支结构弯矩(M)示意图;1-3图为纵向两联的连续梁弯矩(M)
  
若施工中的种种原因,墩顶第二次张拉达不到设计要求,就有可能由1-3图的弯矩图变为图1-2的简支梁弯矩图,而增加跨中正弯矩,这是相当危险的。
  在跨径、荷载相同的情况下,简支梁与连续梁各跨弯矩图的绝对平均值是基本相等的,不同的只是正(跨中)弯矩在连续梁结构体系中减小,它的减小值就是相邻墩顶负弯矩值的平均值。
  从以上的分析得出:简支结构连续梁系的结构转换的关键是墩顶第二次张拉能否满足设计要求。
  
案例:舟山大陆连岛工程的第一座跨海大桥。岑港大桥跨越岑港水道,连接岑港和里钓岛。全桥长为793米,桥面宽22.5米,双向四车道, 通航等级为300吨级,通航净高17.5米,通航净宽2×40米,主桥为3跨50米的先简支后连续预应力混凝土T梁。
  
  3.悬臂法施工:适用于大跨径的预应力混凝土悬臂梁桥、连续梁桥、T型刚构桥、连续刚构桥。其特点是无须建立落地支架,无须大型起重与运输机具,主要设备是一对能行走的挂篮。
  悬浇施工工序:
  ①上挂篮:上挂篮前。0号、1号块必须是浇注完成并张拉,对支座作了临时固结措施。
  ②模板校正、就位。
  ③普遍钢筋,预应力管道。
  ④悬浇箱梁的普通钢筋及预应力管道除须满足一般施工工艺要求外,要特别注意对预应力管道要严格按设计的要求布置,当与普通钢筋发生矛盾时,优先保证预应力管道的位置正确;对预应力用的定位筋固定牢固,确保其保护层的厚度;纵向管道的接头多,接头处理必须仔细,并要采取措施防止孔管堵塞;由于纵向管道较长,一般要在管道中间增设若干个压浆三通,以便压浆时,可以作为排气孔或压浆孔,以保证孔道压浆密实。
  ⑤混凝土浇筑。
  ⑥悬浇箱梁的混凝土强度一般都较高,必须认真做好混凝土的配合比设计,混凝土的拌合根据条件可采用陆上拌合,水上运输至现场,或直接在水上拌合。悬浇时i必须对称浇筑,重量偏差不超过设计规定的要求,浇筑从前端开始逐步向后端,最后与已浇梁端连接。分次浇筑时,第二次浇筑混凝土前必须将首次混凝土的接触面凿毛冲洗干净,对上、下梁段的接触面应凿毛、清洗干净。底、肋板的混凝土的振动以附着式振动器为主,插入式为辅,顶板、翼板混凝土的振动以附着式为辅,插入式为主,辅以平板振动器拖平。混凝土成型后,要适时覆盖,洒水养生。
  ⑦张拉、压浆。
  ⑧张拉前按规范要求对千斤顶、油泵进行标正,对管道进行清洗、穿束,准备张拉工作平台等。
  ⑨当混凝土达到设计及规范要求的张拉强度后按设计规定先后次序、分批、对称进行张拉,严格按照张拉程序进行。张拉后按规范要求对管道进行压浆。
  ⑩拆模及移动挂篮,本梁段设计的张拉束张拉后,落底模,铺设前移轨道,移动挂篮就位,开始下一梁段的施工。
  
  案例:赣江大桥是我国第一座双层立体分流城市公路大桥,位于南昌市桃花乡,全长2780米,其中主桥长1982.45米,引道长797.5米,桥面上屋宽23米,可并行六辆大卡车,下层两侧宽各5米为非机动车道和人行道,这种桥型属国内首创。正桥及西引桥为双层单箱单室后张法三向预应力钢筋砼连续梁桥。主桥跨为(56+11×80+56)米,采用悬臂法施工。西引桥桥跨为(3×48+12×48)米,采用膺架移动脚手架法施工和多点顶推法施工,顶推重量为3.4万吨,乃世界一流,为我国之最。东引桥为20米大孔板梁,先张法预制,采用龙门吊机架设。全桥基础为钻孔桩基础。1990年5月1日开始修建,1994年1月10日建成。
  
  

桥梁伸缩缝设置位置和作用?

以下是中达咨询给大家带来的关于桥梁伸缩缝设置位置和作用的相关内容,以供参考。
桥梁伸缩缝一般有对接式、钢制支承式、组合剪切式(板式)、模数支承式以及弹性装置。
对接式
对接式伸缩缝装置,根据其构造形式和受力特点的不同,可分为填塞对接型和嵌固对接型两种。填塞对接型伸缩装置是以沥青、木板、麻絮、橡胶等材料填塞缝隙,伸缩体在任何情况下都处于受压状态。该类伸缩装置一般用于伸缩量在40mm以下的常规桥梁工程上,但已不多见。嵌固式对接伸缩缝装置利用不同形态的钢构件将不同形状的橡胶条(带)嵌牢固定,并以橡胶条(带)的拉压变形来吸收梁体的变形,其伸缩体可以处于受压状态。也可以处于受拉状态。
模数支承
当桥梁的伸缩变形量超过50mm时,常采用钢质伸缩装置。该伸缩装置当车辆驶过时往往由于梁端转动或挠曲变形而产生拍击作用,噪声大,而且容易使结构损坏。因此,需采用设有螺栓弹簧的装置来固定滑动钢板,以减少拍击和噪声,该伸缩缝的构造相对复杂。
剪切式
该装置是利用各种不同断面形状的橡胶带作为填嵌材料的伸缩装置。由于橡胶富有弹性,易于粘贴,又能满足变形要求且具备防水功能。在国内、外桥梁工程中已获得广泛应用。
钢制支承
板式橡胶制品这一类伸缩装置,很难满足大位移量的要求;钢制型的伸缩装置,很难做到密封不透水,而且容易造成对车辆的冲击,影响车辆的行驶性。因此,出现了利用吸震缓冲性能好又容易做到密封的橡胶材料,与强度高性能好的异型钢材组合的,在大位移量情况下能承受车辆荷载的各类型模数支承式(模数式)桥梁伸缩装置系列。
弹性体
弹性体伸缩装置分为锌铁皮伸缩缝和TST碎石弹性伸缩缝,弹性体伸缩装置是一种简易的伸缩缝装置,对于中小跨径的桥梁,当伸缩量在20mm-40mm以内时可以采用TST碎石弹性伸缩缝装置,是将特制的弹塑性材料TST加热熔化后,灌入经过清洗加热的碎石中,即形成了TST碎石弹性伸缩缝,碎石用以支持车辆荷载,TST弹塑性体在一25℃~60℃条件下能够满足伸缩量的要求。
按照设计图纸提出的不同型号、长度、密封橡胶件的类型及安装时的宽度等要求进行伸缩装置的购置和装配,不同牌号和型号的伸缩装置均由专门的生产厂家成套供应。伸缩装置预先在生产厂家组装好,由专门的设备包装后运送工地。装配好的伸缩装置在出厂前、生产厂家按图纸要求的安装尺寸,用夹具固定,以便保持图纸需要的宽度并分别标出重量、吊点位置。若组合式伸缩装置过长受运输长度限制或别的其他原因时,经监理工程师批准,在工厂试组装后,可以分段组装运输,但模数式伸缩装置必须在工厂组装。用于该分项工程的伸缩缝材料均按计划进场,伸缩装置运到工地存放时均垫设高度距地面至少30cm并用彩条布覆盖好,确保其不受损坏,满足开工的要求。
安装方式
a、安装时,按实际温度确定其安装宽度值。
b、伸缩缝安装过程,必须使用伸缩缝装置整齐排列,保持一定的倾斜度。确保伸缩装置的最高平面与完工的桥面相平。
c、施工方法
①清理槽口,使之达到设计宽度和深度,清除与位移箱埋入有干扰的钢筋,预留坑的开口必须大于伸缩缝的安装宽度。
②检查伸缩装置的各梁之间间隙是否符合安装温度要求,否则,应用水平千斤顶、夹具进行调整直至符合设计要求,调整好后,立即安上专用夹具。
③根据伸缩缝中心位置设置起吊装置,将伸缩装置安入在槽口内,并使伸缩装置的顶面与桥面标高相同。同时注意纵横坡也应与桥面相符。
④伸缩装置吊入预留槽后,其中心线应与梁端预留间隙中心线对正,其长度与桥梁宽度对正。
⑤对伸缩装置直线段进行调整,并使各纵梁的缝隙均匀一致。
⑥再在伸缩装置箱体或锚固板处,立焊Ф16以上的钢筋进行高度定位,横焊Ф16钢筋进行宽度定位。
⑦伸缩装置正确就位锚固后,便可以将伸缩装置一侧的锚固钢筋和预留槽预留钢筋焊接以保证伸缩装置线向固定并找平,焊接时只要每隔2~3个锚固筋焊接一个即可,然后再按上述步骤焊接另一侧的锚固筋。待两侧达到固定后,就可将其余焊接的锚固筋再进行焊接,确保可靠锚固。在焊接锚固筋时要注意不要在边梁和中梁上任意施工焊,以防钢梁发生扭曲变形。
⑧伸缩装置如果分段安装,接缝处必须焊接,焊接应由专业人员进行,每根梁焊好后,再按⑦步骤进行锚固。
⑨根据缝的外形尺寸和预留槽口制作模板,模板放好后应遮挡严实,以防水浆流入位移箱内,伸缩缝上平面加盖板,以防砂浆落入橡胶密封带,在检查装置的正确平整度和中线位置,以及缝隙是否均符合要求后,方可灌入混凝土,并对混凝土充分振捣压实,尤其应注意位移箱与预留坑基面不能留下空洞。待混凝土固化后撤去模板和伸缩缝上的固定卡。
⑩在伸缩缝处混凝土未达到80%的强度前,伸缩缝不能承受外来荷载作用。
端部防水
为防止橡胶密封带内的积水流向墩台,可在伸缩缝装置两端设置翘头,伸缩缝装置的翘头可根据不同的路面设计不同的样式(翘起长度及角度),翘头一般置于防撞墙内部。
破损原因
桥梁伸缩缝装置由于设置在梁端构造薄弱的部位,直接承受车辆荷载的反复作用,又多暴露于大自然中,受到各种自然因素的影响,因此,伸缩装置是易损坏、难修补的部位。伸缩装置产生破损的原因是多方面的,主要有:
1、设计不周
设计时梁端部未能慎重考虑,在反复荷载作用下,梁端破损引起伸缩装置失灵。另外,有时变形量计算不恰当,采用了过大的伸缩间距,导致伸缩装置破损。
2、伸缩缝装置自身问题
伸缩装置本身构造刚度不足锚固的构件强度不足,在营运过程中产生不同程度的破坏。
对伸缩装置的后浇压填材料没有认真对待、精心选择,致使伸缩装置营运质量下降,产生不同程度的病害。
4、伸缩缝的施工与浇筑
施工过程中,梁端伸缩缝间距没有按设计要求完成,人为地放大和缩小,定位角钢位置不正确,致使伸缩装置不能正常工作。这样会出现下列情况:由于缝距太小,橡胶伸缩缝因超限挤压凸起而产生跳车;由于缝距过大,荷载作用下的剪切力以及车辆行驶的惯性,会将松动的伸缩缝橡胶带出定位角钢,产生了另一类型的跳车。施工时伸缩装置的锚固钢筋焊接的不够牢固,或产生遗漏预埋锚固钢筋的现象,给伸缩缝本身造成隐患;施工时伸缩装置安装的不好,桥面铺装后伸缩缝浇筑的不好,使用过程中,在反复荷载作用下致使伸缩缝损坏。
5、连续缝设置不够完善
为了减少伸缩缝,大量采用连续梁或连续桥面。桥面连续就需设置连续缝,连续缝的设置不够完善,致使连续缝破损,而产生桥面跳车。桥面连续缝处,变形假缝的宽度和深度设置得不够规范,不够统一,这也不同程度地影响着连续缝的正常工作。
桥梁伸缩缝的作用:在于调节由车辆荷载和桥梁建筑材料所引起的上部结构之间的位移和联结。斜交桥的伸缩装置一旦被破坏,将严重影响行车的速度、舒适性与安全,甚至造成行车安全事故。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

桥梁80型伸缩缝是什么

就是指位移量为80mm的型钢缝。

桥梁伸缩缝通常在两梁端之间、梁端与桥台之间或桥梁的铰接位置上设置伸缩缝。要求伸缩缝在平行、垂直于桥梁轴线的两个方向,均能自由伸缩,牢固可靠,车辆行驶过时应平顺、无突跳与噪声。

要能防止雨水和垃圾泥土渗入阻塞;安装、检查、养护、消除污物都要简易方便。 在设置伸缩缝处,栏杆与桥面铺装都要断开。

扩展资料:

一、GQF-C型桥梁伸缩装置特点

GQF-C型桥梁伸缩装置采用整体热轧16Mn异型钢,克服了挤压异型钢直线度和集合尺寸不均匀的特点, 建筑高度低,国产热轧整体成型异型钢材高度仅50mm,结构简单,安装方便,具有明显的可靠性、舒适性和耐久性。既方便旧伸缩装置更换,又可供新桥时选用。

选用原则:

桥面铺装层厚度≥80mm

伸缩量≤80mm

二、伸缩缝的施工与浇筑

施工过程中,梁端伸缩缝间距没有按设计要求完成,人为地放大和缩小,定位角钢位置不正确,致使伸缩装置不能正常工作。

这样会出现下列情况:由于缝距太小,橡胶伸缩缝因超限挤压凸起而产生跳车;由于缝距过大,荷载作用下的剪切力以及车辆行驶的惯性,会将松动的伸缩缝橡胶带出定位角钢,产生了另一类型的跳车。

施工时伸缩装置的锚固钢筋焊接的不够牢固,或产生遗漏预埋锚固钢筋的现象,给伸缩缝本身造成隐患;施工时伸缩装置安装的不好,桥面铺装后伸缩缝浇筑的不好,使用过程中,在反复荷载作用下致使伸缩缝损坏。

参考资料来源:百度百科-桥梁伸缩缝

城市桥梁的伸缩缝漏水的原因和措施有那些?

伸缩缝是桥梁结构的重要组成部分,目前国内外使用的桥梁伸缩缝主要有U型锌铁皮、钢滑板、疏形齿加盖板、橡胶伸缩缝及毛勒缝的等。据我国对桥梁伸缩缝使用性能调查的结果表明,除毛勒缝外,现有桥梁伸缩缝完好的使用年限很短,一般只有2~3年,较长的也只有5~6年,破损率高达80%,因而造成伸缩缝的不断维修,养护及修复时又必须中断交通,难度较大,造成维修不够及时,从而导致漏水。部分伸缩缝本身不具有防水功能,也是造成伸缩缝漏水的原因。伸缩缝在长期的使用过程中,难免被石屑、灰渣、树叶等杂物堵塞,影响伸缩缝正常工作的同时,也使雨水不能及时排出,造成伸缩缝漏水。伸缩缝位于主梁端部活动支座处,由于伸缩缝的破损,雨水会侵蚀主梁、帽梁及支座,造成主梁、帽梁返碱,钢筋锈胀,混凝土破碎脱落,甚者造成下墩部分砼开裂脱落,使支座锈蚀、卡滞、老化,影响了梁体的正常收缩。
防治措施:砼强度低和密实度差是伸缩缝破损的最直接原因,因此在进行伸缩缝施工及维修中,伸缩缝周边砼,特别是底板以下部分,应该采用高强度砼,在维修中还应采用早强型砼,保证车辆断行解除后,不易被轧坏。在改建及新建桥梁时,要尽可能选用结构合理、功能完善、经久耐用及防水型伸缩缝,如TS80型防水伸缩缝,其具有整体性好刚度大,内设“V”型防水胶条,不受车轮冲击,防水性能良好,是近年来使用情况最好的一种伸缩缝。要注意日常对伸缩缝缝内杂物的及时清理,以防止伸缩缝胀裂,保障雨水的及时排出。

桥面伸缩缝建筑工程介绍?

桥面伸缩缝是使车辆平稳通过桥面并满足桥面变形,需要在两相邻梁端之间、梁端与桥台背墙之间设置一定的伸缩装置。中达咨询就桥面伸缩缝和大家简单介绍一下。桥面伸缩缝一般分为刚性伸缩缝和弹性伸缩缝。
桥面伸缩缝设于桥梁上部结构活动端、桥面断缝处的伸缩装置。用以保证上部结构在温度变化、混凝土收缩和徐变,以及荷载作用下,在该处的变位能够实现,而不产生额外的附加内力,并能保证行车平顺。
桥面伸缩缝设置在上部结构的活动端和桥台,以及各联(孔)上部结构衔接处。公路桥在车行道和人行道上沿桥的横方向通长设置,栏杆在接缝处亦须中断以保证结构的自由变位,避免拉裂;在接缝处的桥面防水层仍应妥善铺设,防止雨水侵蚀承重结构。如采用敞口式的桥面伸缩缝,还应考虑便于清除污物,并在缝下设置截水和引水装置,使积水排出桥外。铁路桥同理也需设伸缩缝,在道碴桥面中,应考虑防止道碴坠落缝中的措施。
桥面伸缩缝伸缩缝处有位移,且承受水平荷载和车轮的拍击作用,如设计不当容易导致伸缩缝的过早损坏,影响作用,增加养护费用。良好的桥面伸缩缝应能适应承重结构在水平和竖直方向的位移和转动,保证路面连续和平整,锚固可靠,防水防尘,在城市桥梁中还应尽可能减少因车辆通过而发生的噪声。

更多关于标书代写制作,提升中标率,点击底部客服免费咨询。